Metric algebroid and Dirac generating operator in Double Field Theory
نویسندگان
چکیده
منابع مشابه
Double metric, generalized metric, and -deformed double field theory
Citation Hohm, Olaf, and Barton Zwiebach. "Double metric, generalized metric, and-deformed double field theory. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We ...
متن کاملIndefinite-metric quantum field theory and operator algebra
It is often inevitable to introduce an indefinite-metric space in quantum field theory. There is a problem to determine the metric structure of a given representation space of field operators. We show the systematic method to determine such indefinite-metric explicitly. At first, we choose a new involution ∗ of field operators instead of the original involution † such that there is a Hilbert sp...
متن کاملGeneralized Metric Formulation of Double Field Theory on Group Manifolds
We rewrite the recently derived cubic action of Double Field Theory on group manifolds [1] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all th...
متن کاملLie Algebroid Foliations and E(m)-dirac Structures
We prove some general results about the relation between the 1-cocycles of an arbitrary Lie algebroid A over M and the leaves of the Lie algebroid foliation on M associated with A. Using these results, we show that a E1(M)-Dirac structure L induces on every leaf F of its characteristic foliation a E1(F )-Dirac structure LF , which comes from a precontact structure or from a locally conformal pr...
متن کاملRunge - Lenz operator for Dirac field in Taub - NUT background
Fermions in D = 4 self-dual Euclidean Taub-NUT space are investigated. Dirac-type operators involving Killing-Yano tensors of the Taub-NUT geometry are explicitly given showing that they anticommute with the standard Dirac operator and commute with the Hamiltonian as it is expected. They are connected with the hidden symmetries of the space allowing the construction of a conserved vector operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2020
ISSN: 1029-8479
DOI: 10.1007/jhep10(2020)192